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a b s t r a c t

This work explores the role of cycles in consensus seeking networks for analysis and synthesis purposes.
Cycles are critical for many reasons including improving the convergence rate of the system, resilience
to link failures, and the overall performance of the system. The focus of this work examines how cycles
impact the H2 performance of consensus networks. A first contribution shows that the addition of cycles
always improves the performance of the system. We provide an analytic characterization of how the
addition of edges improves the performance, and show that it is related to the inverse of the cycle lengths
and the number of shared edges between independent cycles. These results are then used to consider
the design of consensus networks. In this direction we present an ℓ1-relaxation method that leads to
a convex program for adding a fixed number of edges to a consensus networks. We also demonstrate
how this relaxation can be used to embed additional performance criteria, such as maximization of the
algebraic connectivity of the graph.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The consensus protocol has recently emerged as a canonical
model for studying networked dynamic systems. The simplicity
of the model, most often presented as a collection of single
integrators interacting over a communication graph, reveals a
deep connection between its dynamic behavior and the underlying
properties of the graph [1]. The use of consensus models,
even beyond its analytical elegance, is its practical relevance
in applications ranging from optimization and sensor fusion
to problems in formation control and distributed control and
estimation [2–6]. It is precisely the utility and simplicity of this
model that has pushed research in this area to pursue a more
general control theory for networked dynamic systems.

Within the framework of this setup, the use of graph theory
as a tool for analysis is recognized as the correct mathematical
abstraction to study these systems. Perhaps the most celebrated
result in this direction is the relationship of the algebraic
connectivity of a graph, sometimes referred to as the Fiedler
eigenvalue [7], to the convergence rate of the dynamic system. The
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importance of this property has been extended inmany directions,
including convergence analysis for random graphs [8] and graphs
with communication delays and switching topologies [9]. Various
modifications to the consensus protocol have also led to more
general system theoretic notions such as controllability and
observability [10,11] and input–output properties [12–14].

While the analysis of consensus systems has matured, work
related to the design of consensus protocols and the characteri-
zation of system performance beyond that of its convergence rate
have not been as deeply studied. As the consensus protocol be-
comesmore integrated into complex real-world networks, the im-
portance of design froman optimality perspective becomes crucial.
A fundamental challenge for the design of consensus networks,
however, relates to the computational complexity of solving com-
binatorial problems. A common approach to this problem is to
consider optimization over weighted graphs or other convex re-
laxations [15–17]. However, most results that deal with the design
of networks focus on the optimization of the Fiedler eigenvalue,
aligning with the mainstream results related to connectivity and
convergence rates [18,19].

An important extension of these works, therefore, is the
introduction of more general notions of system performance in
coordination with the design of these networks. A first step in
this direction is to include exogenous inputs in the form of noises
and disturbances into the consensus protocol. Such models have
been considered in [17,20,21] where noises were introduced in
either the process or measurement of the consensus protocol. This
more general model of the consensus protocol better reflects their
use in real-world systems. Indeed, multi-agent systems relying on
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relative sensing, such as formation flying or sensor fusion, will
depend on sensors and actuators that are imperfect.

Noises in the consensus protocol lead to a random walk
of the agreement value, and attempts to compensate for this
includes the design of edge weights [17], or the introduction of
a time-varying gain on the control to effectively reject the noise
asymptotically [20]. When the consensus protocol is corrupted
by noise, the H2 system norm provides a measure of how the
noises affect the asymptotic deviation of each node’s state from
a consensus state. This performance metric has been used to
study, for example, the leader selection problem for consensus
networks [22]. The H2 performance of large scale networked
systems and fractal graphswere considered in [23,24]. Otherworks
have considered this metric for consensus networks over directed
graphs [25], spanning trees [26], and biochemical networks [27].

However, many of these results do not exploit the underlying
combinatorial properties of the graph as it relates to these
metrics. We emphasize a distinction between spectral properties
of the graph, i.e. the eigenvalues of the Laplacian matrix, and
combinatorial properties of a graph such as path lengths and cycles.
Indeed, spectral properties introduce a layer of abstraction to the
underlying graph that makes more tangible design issues, such as
edge costs and distances, less intuitive.

A thorough treatment in this direction was recently given
in [28] via the introduction of the Edge Laplacian and its corre-
sponding edge agreement problem. The edge Laplacian is a variant of
the graph Laplacian that provides a more transparent understand-
ing of how spanning trees and cycles affect certain algebraic prop-
erties of a graph. When the consensus protocol is analyzed using
this construction, clear graph theoretic interpretations of the H2
norm of the system can be derived [28].

An unresolved question from [28], however, was the precise
role that cycles play in the performance of consensus networks.
The main result from [28] showed that the H2 performance is
determined by the inverse of amatrix related to the cycle structure
of the graph. However, the precise structure of this matrix was
not considered, and this work contributes in that regard. It is
well known that the addition of cycles in a graph will increase its
algebraic connectivity [29],1 however, a similar result has not been
found for other performance metrics. A fundamental contribution
of this work, therefore, is an analytic characterizations of how
cycles affect the H2 performance of consensus networks. In this
direction, we provide new interpretations for the role of cycles as
related to algebraic properties of the edge Laplacian, and dynamic
properties of the consensus protocol. In particular, we show that
the H2 norm of the consensus protocol always improves with the
addition of cycles. We provide an exact characterization of how
the addition of one or two cycles improves the performance. The
improvement is proportional to the inverse of the cycle lengths
and also related to the number of edges that are shared between
cycles. This establishes a strong connection between combinatorial
properties of the underlying graph and dynamic properties of the
corresponding protocol.

The analytic results are then used to formulate a synthesis
problem for consensus networks. The problem considers the task
of adding a fixednumber of edges to an existing consensus network
over a spanning tree that leads to the greatest improvement
in performance. A first approach to this problem leads to a
mixed-integer program, generally considered a hard problem
to solve due to its combinatorial nature. This combinatorial
problem can be formulated as an ℓ0-optimization problem. By
combining graph theoretic insights with results from compressed

1 More precisely, the algebraic connectivity of a graph is a non-decreasing
function of the number of edges.
sensing [30,31], we reformulate the problem as a reweighted
ℓ1-optimization problem. The ℓ1-optimization problems are well
known to achieve sparse solutions [32–34] and we show that
this convex relaxation of the original mixed-integer problem
gives very good results. We also highlight how the weighting
mechanism used in the ℓ1 formulation provides an important
tuning parameter for design. The analytic results of this work
provide intuition for appropriate weighting functions, including
cycle length weighting and cycle correlation weighting. This
formulation allows to consider additional performance criteria
including maximizing the algebraic connectivity of the graph.
These results are demonstrated via some simulation examples.

This paper is organized as follows. Section 2 reviews the
fundamental properties of the edge Laplacian and provides results
relating to algebraic properties of this matrix and cycles in this
graph. The edge agreement problem is given in Section 3. These
results are then applied in Section 4 to derive the H2 performance
of the agreement protocol as a function of the edges in the graph.
The synthesis problem and ℓ1 formulation is given in Section 5, and
numerical simulations are presented in Section 6. Finally, we offer
some concluding remarks in Section 7.

1.1. Notations

The notation used is standard. The set of real numbers is
denoted by R. For a vector x ∈ Rn, its transpose is given by xT and
the ith component by xi; the ijth element of a matrix A is denoted
[A]ij. The trace of a matrix is denoted tr[·]. The null space and
range space of a matrix is denoted as N (A) and R(A) respectively.
A symmetric matrix is positive definite (semi-definite) if all its
eigenvalues are positive (non-negative), and is denotedA > 0 (A ≥

0); the linear matrix inequality A > B (A ≥ B) is equivalent to
A−B > 0 (A−B ≥ 0). The cardinality of a setM is denoted as |M|.
The ℓ1 norm of a vector x ∈ Rn is defined as ∥x∥1 =


i |xi|. The

ℓ0-norm of a vector is defined as ∥x∥0 = |{i | xi ≠ 0}|, the number
of non-zero elements in the vector x. Note that in fact, the ℓ0-norm
is not a true norm, but it is commonly referred to as a norm in the
literature and we adopt that convention in this work.

2. Cycles and the edge Laplacian

As discussed in the introduction, graph theory plays a central
role in the analysis of consensus networks. In particular, the
consensus protocol is described in terms of a certain algebraic
representation of the underlying communication graph known
as the (graph) Laplacian. The work presented in here, however,
relies on an alternative representation that we term the edge
Laplacian [28]. In this section, we review the construction of the
edge Laplacian and focus the presentation on the role cycles play
for its algebraic properties.

2.1. Graphs, spanning trees, and cycles

We first provide a brief review of concepts from graph
theory [29]. A graph, denoted G = (V, E), consists of a set of nodes
V = {v1, . . . , vn}, and a set of edges E ⊆ V × V , describing the
incidence relation betweenpairs of nodes. Unless otherwise stated,
we assume that |V| = n. In this work we deal with undirected
graphs but at times will assign an arbitrary orientation to each
edge. In this way, we denote an edge e ∈ E with the ordered
pair (vi, vj) ∈ V × V as the directed edge connecting vi to vj;
we also use the notation vi ∼ vj to denote that these two nodes
are connected (or adjacent). A path is a sequence of distinct nodes
such that consecutive nodes are adjacent to each other. If the initial
and terminal node of a path are the same, it is called a cycle. The
length of a path (cycle) is the number of edges traversed in the path
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sequence. For example, a triangle is a cycle of length 3. The diameter
of a graph, denoted diam[G], is the maximum distance2 between
any two nodes in a graph. A graph is connected if there exists a path
between any pair of nodes; otherwise it is called disconnected. In
this work, we always assume connected graphs.

A graph G′
= (V ′, E ′) is a subgraph of G if V ′

⊆ V and E ′
⊆ E;

equivalently, we write G′
⊆ G. A spanning tree of the graph G =

(V, E) is a connected cycle-free subgraph on the same node set,
denoted T = (V, Eτ ) ⊆ G. Consequently, |Eτ | = |V| − 1 for
any choice of spanning tree. For a given spanning tree T , the set
Ec = E \Eτ contains all the edges in G that are not in T . These edges
must therefore complete the cycles of the graph, and we denote
the cycle subgraph of G as C = (V, Ec) ⊆ G. Note that the cycle
subgraph depends on the choice of the spanning tree, formalized
by the relation T ∪ C = G. The complement of the graph G = (V, E)
is denoted G = (V, E) such that E = {e ∈ V × V | e ∉ E}. A
particular graph of importance to this work is the complete graph
on n nodes, denoted Kn. The complete graph contains all possible
edges, which for undirected graphs has cardinality n(n− 1)/2. For
any given graph G on n nodes, the relationship G ∪ G = Kn holds.
This relation proves useful when considering the complement of
a spanning tree, T , as it describes all possible cycles that can be
created from that particular spanning tree.

Graphs also admit several useful algebraic representations. The
incidencematrix of the graph G, E(G) ∈ R|V|×|E|, is a {0, ±1}-matrix
with rows and columns indexed by the vertices and edges of G
such that [E(G)]ik has the value ‘+1’ if node i is the initial node of
edge k, ‘−1’ if it is the terminal node, and ‘0’ otherwise. The (graph)
Laplacian is a symmetric and positive semi-definitematrix defined
using the incidence matrix as [29]

L(G) = E(G)E(G)T . (1)
Note that while the incidence matrix encodes edge directions,
the Laplacian loses such information. In this work, we denote the
eigenvalues of the Laplacian as
0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λ|V|(G).

The eigenvector associated with λ1(G) is the all-ones vector, 1 ∈

R|V|. The algebraic connectivity of the graph λ2(G), sometimes
referred to as the Fiedler eigenvalue, is strictly positive if and only if
the graph is connected [7,29]. The Laplacian for the complete graph
Kn can be expressed in terms of the Laplacian for any spanning tree
T and the corresponding cycles C = T as

L(Kn) = L(T ) + L(C) = nI − 11T . (2)
Using an appropriate labeling of the edges in the graph, we can

always express the incidence matrix in terms of the subgraphs T
and C for a particular choice of spanning tree,
E(G) =


E(T ) E(C)


.

This representation aids in the interpretation of several results
relating the sub-graphs T and C. For example, a signed path vector
ξ ∈ RE is a {0, ±1}-vector corresponding to a path in G, such
that ξi takes the value ‘+1’ (‘−1’) if edge ei ∈ E is traversed
positively (negatively), and ‘0’ otherwise. Any path, therefore, can
be expressed using only edges from the sub-graph T . Observe that
the length of a path can be computed from its signed path vector
as ξ T ξ . Furthermore, a cycle can be expressed using exactly one
edge from C, and the remaining edges from T . This is formalized
by the following result, establishing a strong connection between
algebraic properties of the incidence matrix and properties of the
underlying graph.

Theorem 1 ([29]). For a connected graph G, the null space of E(G)
is spanned by all the linearly independent signed path vectors
corresponding to the graph cycles.

2 The distance between two nodes is the length of the shortest path connecting
them.
Fig. 1. A graph with cycles c1, c2 and c3 . The cycle c1 is edge-disjoint with c2 and
c3 , while c2 and c3 are correlated.

Theorem 1 implies that the incidence matrix corresponding to
the cycle subgraph can be expressed as a linear combination of
the edges in the spanning tree. Formally, we define the matrix
T(T ,C) ∈ R|V|×|Ec | as [28]

T(T ,C) =

E(T )E(T )T

−1
E(T )TE(C), (3)

satisfying

E(T )T(T ,C) = E(C).

Thematrix T(T ,C), therefore, encodes information related to the
cycles that can be formed from the spanning tree T . To further
aid in the following exposition, we express T(T ,C) in terms of its
columns, T(T ,C) =


c1 · · · c|Ec |


, and using a slight abuse in

convention, we will also refer to the ith column of T(T ,C) as the
ith cycle of the graph G. Similarly, we will refer to the ith column
of E(T ) with τi as the ith edge in the spanning tree. This matrix
is also referred to as the Tucker representation of a graph, used in
network optimization communities [35]. A surprising result is that
the number of spanning trees that can be found in a graph, τ(G),
can be determined as [29]

τ(G) = det[I + T(T ,C)T T
(T ,C)]. (4)

At times, we will refer to the matrix R(T ,C) =

I T(T ,C)


. Using

this notation, note that

E(G) = E(T )R(T ,C).

We explore now additional properties of the matrix T(T ,C)

and its variations. While (3) suggests that a matrix inverse is
required to compute T(T ,C), this is in fact unnecessary. Indeed, if
the spanning tree is given, one only need construct a signed path
vector corresponding to the edges in the tree that form a cyclewith
a corresponding edge in the cycle subgraph; this signed path vector
will form a column of the matrix T(T ,C). This is discussed in more
detail as a consequence of the basis theorem in [35].

The previous discussion suggests that T(T ,C) also encodes
information related to the length of each cycle, denoted l(ci), and
correlations between different cycles in G. In this direction, we first
define the notion of edge-disjoint cycles and correlated cycles.

Definition 1. Two cycles are said to be edge-disjoint if they do not
have any edges in common.

Definition 2. Two cycles are said to be correlated if they are not
edge-disjoint.

If two cycles ci and cj are correlated, the quantity sij is the number
of edges the cycles share. Fig. 1 shows a graph with three cycles
illustrating the definitions.

Proposition 1. The matrix T T
(T ,C)T(T ,C) encodes the following infor-

mation about the cycles in G.

1. [T T
(T ,C)T(T ,C)]ii = cTi ci = l(ci) − 1.

2. [T T
(T ,C)T(T ,C)]ij = cTi cj = 0 if and only if cycles ci and cj are edge-

disjoint.
3. [T T

(T ,C)T(T ,C)]ij = ±sij if and only if cycles ci and cj are correlated.
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Proof. The ith column of T(T ,C) is a signed path vector with length
cTi ci. The length of the cycle formed using this signed path vector
must be l(ci) = cTi ci + 1. For the next statement, first consider
the case where cTi cj = 0. This implies that the two vectors
are orthogonal which can in general describe two situations. The
first possibility is whenever [ci]k = 0 ([ci]k ∈ {0, ±1}) then
[cj]k ∈ {0, ±1} ([cj]k = 0) which is precisely when the cycles are
edge-disjoint. The other possibility occurs if for each edge ek with
[ci]k[cj]k = +1 ([ci]k[cj]k = −1), there exists another edge es such
that [ci]s[cj]s = −1 ([ci]s[cj]s = +1); note that this implies that the
cycles are correlated andmust share an even number of edges. We
will now show that this can never be possible. Denote the directed
path of length p fromnodes v to v′ as the sequence of edges {τi, i =

1, . . . , p} in the spanning tree subgraph T , with τi adjacent to τi+1.
Similarly, denote the directed path of length p′ from nodes u to u′

as the sequence of edges {τ̃i, i = 1, . . . , p′
} in the spanning tree

subgraph T with τ̃i adjacent to τ̃i+1. Furthermore, assume the edges
(v, v′), (u, u′) ∈ C; that is they are edges in the cycle sub-graph.
Observe that if the cycles are correlated, the shared edges must be
a sequence of adjacent edges.3 Assume without loss of generality
that the shared edges are {τl, . . . , τl+h} for someoddnumber h, and
this sequence provides a directed path from a node q to a node q′

(i.e., the node q is used by edge τl, and the node q′ is used by edge
τl+h). The path from v to v′ must either contain the directed path
from q to q′, or from q′ to q. The same is true for the path fromu tou′.
This implies that cTi cj = ±(h+1), leading to a contradiction. For the
other direction, assume that two cycles ci and cj are edge disjoint.
Then the signed path vector corresponding to each cycle have no
non-zero elements in common, and cTi cj = 0. The proof of the third
statement follows from the second, with the sign indicating if the
direction through the spanning tree is the same or opposite, and
observing that h + 1 is sij. �

Proposition 2. The matrix T(T ,C)T T
(T ,C) encodes the following infor-

mation about the cycles in G.
1. [T(T ,C)T T

(T ,C)]ii is the number of times edge τi is used to construct
the cycles in C.

2. [T(T ,C)T T
(T ,C)]ij is ± the number of times edges τi and τj are used

in the same cycle. The sign of the entry is positive if both edges are
traversed in the same direction, and negative otherwise.

3. (I + T(T ,C)T T
(T ,C)) is invertible.

Proof. The first and second statements follows directly from the
structure of T(T ,C). The sign condition of the second statement
follows from a similar argument used in the proof of Proposition 1.
The inevitability of (I + T(T ,C)T T

(T ,C)) follows from the fact that
T T
(T ,C)T(T ,C) is a positive-semi definite matrix, and has the same

non-zero eigenvalues and rank as T(T ,C)T T
(T ,C). �

The properties described in Propositions 1 and 2 will prove useful
in the sequel.

2.2. The edge Laplacian

The edge Laplacian is a |E|×|E| symmetricmatrix defined as [28]

Le(G) := E(G)T E(G). (5)

One of the results in [28] showed that the edge Laplacian is
related to the graph Laplacian via a similarity transformation. We
summarize the results here and refer the reader to [28] for the
proof.

3 This must be true, otherwise there would be two distinct paths connecting the
edges that are not in sequence, implying that one of the edges in {τi} or {τ̃i} must
not be in the spanning tree subgraph.
Theorem 2 ([28]). The graph Laplacian for a connected graph L(G)
containing cycles with an arbitrary but fixed spanning tree T is similar
to the matrix
Le(T )R(T ,C)RT

(T ,C) 0
0 0


,

where Le(T ) and R(T ,C) =

I T(T ,C)


are defined in (5) and

(3) respectively.
The edge Laplacian for a graph with cycles, Le(G), is similar to the

matrix
Le(T )R(T ,C)RT

(T ,C) 0
0 0


,

where the block-matrix of zeros is square with dimension equal to the
number of independent cycles in the graph.

The edge Laplacian for any graph, Le(G), is similar to the bordered
graph Laplacian
L(G) 0
0 0


,

where the block-matrix of zeros is square with dimension equal to the
number of independent cycles in the graph minus one.

We refer to the matrix Le(T )R(T ,C)RT
(T ,C) ∈ R|ET |×|ET | as

the essential edge Laplacian. A direct consequence of Theorem 2
is that for any connected graph the essential edge Laplacian has
only positive eigenvalues, and they are precisely the non-zero
eigenvalues of L(G). Furthermore, when the underlying graph is
a tree (i.e. G = T ), then Le(T )R(T ,C)RT

(T ,C) = E(T )TE(T ) is a
symmetric positive-definite matrix.

Corollary 1. The essential edge Laplacian for the complete graph Kn
is

Le(T )R(T ,C)RT
(T ,C) = nI. (6)

Proof. For notational simplicity we denote Eτ = E(T ) and Ec =

E(C). Using (2) and (3) obtains the following chain of equalities,

Eτ (Le(T )R(T ,C)RT
(T ,C))E

T
τ = EτET

τ Eτ (I + T(T ,C)T T
(T ,C))E

T
τ

= L(T )2 + L(T )L(C)

= L(T ) (L(T ) + L(C))

= L(T )

nI − 11T 

= nL(T ).

The last term implies that Le(T )R(T ,C)RT
(T ,C) = nI . �

The essential edge Laplacian is the main tool used to derive
an edge variant of the consensus protocol. It is important
to emphasize that the similarity transformation discussed in
Theorem2preserves both the algebraic properties of the Laplacian,
along with structural properties relating the graph to its matrix
representation. The benefit of this transformation is explored in the
sequel.

3. The edge agreement problem

The standard consensus model is based on a collection of n
single integrator agents that exchange relative state information
over a communication graph to generate a control. The model is
usually presented as an autonomous system with no noises or
disturbances [1],

ẋ(t) = −L(G)x(t). (7)

Here, the vector x(t) ∈ Rn is the concatenated state of each agent,
and L(G) is the Laplacian matrix.

A two-port interpretation of the consensus protocol provides
a framework for considering the presence of exogenous inputs,
such as reference signals andnoises entering themeasurement and
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Fig. 2. Consensus as a 2-port feedback configuration.

process.4 This representation is pictured in Fig. 2, and is described
as

ẋ(t) = u(t) + w(t)
z(t) = E(G)T x(t)
y(t) = E(G)T x(t) + v(t),

(8)

with the control defined as

u(t) = −E(G)y(t).

The closed-loop system thus has the dynamics

Σ(G) :

ẋ(t) = −L(G)x(t) +

I −E(G)

 w(t)
v(t)


z(t) = E(G)T x(t).

(9)

Remark 1. The two-port representation of the consensus protocol
is meant to illustrate the underlying mechanism of the dynamics;
it transparently reveals how disturbances can enter into the
consensus model and also shows the distributed nature of the
dynamics. The model (8) is closely related to the noise-corrupted
models given in [17,20,21], with the main difference that we
consider simultaneously noises at the measurement and the
process.

Observe that this more general model is not a minimal
realization of the system. Indeed, the system has an unobservable
mode in the direction of the 1 vector [28,36]. Furthermore, due
to the eigenvalue at the origin of the state matrix, certain system
norms are not meaningful (i.e. the H2 norm of the system (9) is
unbounded). As discussed in [28], the results of Theorem 2 can
be used to define a state transformation leading to a minimal
realization of the system; the state matrix then becomes the
essential edge Laplacian.5

Σe(G) :


ẋτ (t) = −Le(T )R(T ,C)RT

(T ,C)xτ (t)

+

E(T )T −Le(T )R(T ,C)

 w(t)
v(t)


z(t) = xτ (t).

(10)

Here, the transformed state vector xτ (t) ∈ R|Eτ | can be interpreted
as a state associated with the edges of the spanning tree T . The

4 In this work we assume the inputs are white Gaussian noises with unit
covariance.
5 Thus, (10) represents the dynamics for only the controllable and observable

modes of the system.
Fig. 3. Cycles as a feedback mechanism.

system (10) is referred to as the edge agreement problem. An added
benefit of this system is the state matrix is now Hurwitz; i.e., all
the eigenvalues are in the open left-half of the complex plain.
We discuss the implications of this in the sequel. In this work we
consider T as a skeletal system for the complete consensus network.
In this regard, we only observe the states along the tree, xτ (t), as
the controlled variable in the edge agreement problem.6

An interesting interpretation of the minimal system Σe(G) is
that the cycles in the graph can be viewed as an internal feedback
mechanism for the system. To elucidate on this idea, consider the
following dynamic system over a spanning tree T ,

f (T ) : ẋτ (t) = −Le(T )xτ + Le(T )u(t) + Γ


w(t)
v(t)


,

with a state-feedback control

κ(C) : u(t) = −T(T ,C)T T
(T ,C)xτ (t),

and Γ = [E(T )T − Le(T )R(T ,C)]. The resulting closed-loop
system is the minimal edge-agreement system in (10). When
interpreting T(T ,C) as an encoder of cycles, we can view the state-
feedback term as a generator of cycles; this motivates the above
notation for the control law, κ(C), as an explicit function of the
cycles in the graph. The equivalence of the above system with the
edge-agreement system reveals a new interpretation for cycles in
consensus networks.

Cycles as a feedback mechanism can lead to a deeper
understanding of their role in consensus. Indeed, when presented
in a feedback configuration as in Fig. 3, one can conclude that cycles
can be used to reduce the sensitivity of the system to external
disturbances. This provides a powerful framework for considering
problems related to the design of cycles to that of optimal controller
design [37]. Therefore, based on this new interpretation of cycles
as feedback, one can now attempt to cast problems related to the
optimal design of graphs to that of the optimal synthesis of feedback
controllers. This sets the stage for presenting a canonical problem
for the design consensus networks.

Problem 1 (Consensus Design). Consider a consensus network over
a spanning tree T = (V, Eτ ) and a set of candidate edges in E τ . Add
k edges to T from the set E τ that leads to the largest improvement
in the performance of the edge agreement problem. That is, solve
the following optimization problem:

min
T(T ,C)∈R|V|×k

∥Σe(G)∥p, (11)

for some p (i.e. p = 2, ∞).

Note that this problem is in fact an integer program (the
matrix T(T ,C) takes values in {0, ±1}). In the sequel, we first
characterize how cycles impact the performance of the edge
agreement problem, and then present a solution method for
solving Problem 1 using an l1-relaxation method.

6 As opposed to considering RT
(T ,C)x(t) as the controlled variable.
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4. Performance of cycles

In this work, we consider the H2 performance of the edge
agreement problem (10), and in particular focus on how the
addition of cycles impacts this measure. Analyzing the consensus
protocolwith thismetric ismeaningful in the sense that it provides
ameasure of hownoises can affect the asymptotic deviation of each
agent from a consensus configuration; i.e., it studies the effect of
noises on the relative states in the consensus protocol. As discussed
in [17,20], noises can lead to a randomwalk of the consensus value.
Indeed, it is a straightforward exercise to verify that the covariance
of the average of the system states, (1/n)1T x(t), is a linear function
of time (and therefore unbounded as t → ∞). Therefore, when
considering a noise-corrupted consensus protocol, we are more
concerned with how the noises affect deviations from a consensus
state, rather than convergence to the average consensus value.
The analysis given here will provide the analytic foundation for
considering the design problem proposed in Problem 1. The H2
performance was originally considered in [28] and we briefly
review its derivation here.

Recall that the H2 performance of a linear systemΣ = (A, B, C)

can be computed as ∥Σ∥
2
2 = tr[CXCT

], where X is the solution of
the Lyapunov equation [37],

L(X) = AX + XAT
+ BBT

= 0. (12)

For the edge agreement problem, the solution of the Lyapunov
equation can be written by inspection as [28]

X(G) =
1
2


(R(T ,C)RT

(T ,C))
−1

+ Le(T )

. (13)

We emphasize that the solution is a function of the underlying
graph G, and in particular on the choice of spanning tree and cycles.
This can be used to characterize the H2 performance of the edge
agreement problem.

Theorem 3 ([28]). The H2 performance of edge agreement prob-
lem (10) is

∥Σe(G)∥2
2 = tr[X(G)] =

1
2
tr

(R(T ,C)RT

(T ,C))
−1

+ (n − 1). (14)

A direct corollary of Theorem 3 provides an upper and lower
bound for the performance of the edge agreement problem. In
particular, we observe that the performance is upper bounded by
any choice of spanning tree, and is lower bounded by the complete
graph, Kn.

Corollary 2 ([28]). The H2 performance of the edge agreement
problem for an arbitrary connected graph G is bounded from above
and below as

∥Σe(Kn)∥
2
2 =

n2
− 1
n

≤ ∥Σe(G)∥2
2 ≤ ∥Σe(T )∥2

2 =
3
2
(n − 1), (15)

where T ⊆ G is any spanning tree in the graph.

Corollary 2 states that the complete graph Kn will yield the best
H2 performance for the edge agreement problem, and that all trees
yield the same upper-bound. This result also indicates that cycles
generally improve performance. An open problem, therefore, is
to precisely characterize how cycles impact the performance.
In this direction, we first present a result showing that the H2
performance always improves with the addition of cycles.
Theorem 4. Consider the edge agreement problem where the
underlying graph is the connected graph G = (V, E) with spanning
tree T = (V, Eτ ). Then the H2 performance of the edge agreement
problem on the graph G ∪ e with e ∈ E is given as

∥Σe(G ∪ e)∥2
2 = ∥Σe(G)∥2

2

−

tr


R(T ,C)RT
(T ,C)

−1
ccT


R(T ,C)RT

(T ,C)

−1


2

1 + cT


R(T ,C)RT

(T ,C)

−1
c
 , (16)

where c is the cycle formed by the new edge e and the tree T .

Proof. Consider any graph G ≠ Kn with spanning tree T . Then the
performance of the system Σe(G) is given by (14). Adding a single
edge e creates a newcycle c , and theperformance of the augmented
system Σe(G ∪ e) is

∥Σe(G ∪ e)∥2
2 =

1
2
tr


R(T ,C)RT
(T ,C) + ccT

−1


+ n − 1. (17)

The matrix ccT is a rank-one matrix, and the matrix inversion in
(17) can be computed using the Sherman–Morrison formula [38]
for the inverse of a rank-one update as
R(T ,C)RT

(T ,C) + ccT
−1

=

R(T ,C)RT

(T ,C)

−1

−


R(T ,C)RT

(T ,C)

−1
ccT


R(T ,C)RT

(T ,C)

−1

1 + cT

R(T ,C)RT

(T ,C)

−1
c

.

The second term in the above expression can never be zero and
is positive semi-definite. Therefore, the addition of a cycle will
always improve the H2 performance. �

This result can easily be extended to consider the improvement
of the performance when adding a subset of edges from a given set
of candidate edges.

Corollary 3. Consider the edge agreement problem with the under-
lying graph is the connected graph G = (V, E) with spanning tree
T = (V, Eτ ). Let M ⊆ E be a set of candidate edges, and let N ⊂ M.
Then

∥Σe(G ∪ M)∥2
2 < ∥Σe(G ∪ N)∥2

2. (18)

Proof. The proof is a direct consequence of Theorem 4 and
successive application of the Sherman–Morrison formula for rank-
one updates [38]. �

Having established that the addition of cycles always improve
the system performance, we now consider combinatorial interpre-
tations, such as cycle lengths, of the previous results.

Theorem 5. Consider the edge agreement problem where the
underlying graph is a spanning tree, T = (V, Eτ ), and consider a
single edge e ∈ E τ . Then the graph T ∪ e has one cycle, c, and the
performance of the edge agreement problem is given as

∥Σe(T ∪ e)∥2
2 = ∥Σe(T )∥2

2 −
1
2
(1 − l(c)−1), (19)

where l(c) is the length of the cycle.

Proof. From (3), the matrix T(T ,C) can be computed and will have
only one column, therefore T(T ,C)T T

(T ,C) is a rank-one matrix. To
compute the performance of Σe(T ∪ e), the result of Theorem 3
must be applied. In this setting, (R(T ,C)RT

(T ,C))
−1 can be seen as
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the inverse of the identity with a rank-one update. Applying the
Sherman–Morrison formula [38] and Proposition 2 leads to

(R(T ,C)RT
(T ,C))

−1
=

I + T(T ,C)T T

(T ,C)

−1

= I −
1

l(c)
T(T ,C)T T

(T ,C).

Computing the trace yields tr[(R(T ,C)RT
(T ,C))

−1
] = n − 2 + l(c)−1.

Therefore,

∥Σe(T ∪ e)∥2
2 =

1
2
(n − 2 + l(c)−1) + n − 1

=
3
2
(n − 1) +

1
2
(l(c)−1

− 1),

and the result follows. �

Theorem 5 immediately leads to the following corollary,
bounding the performance increase achievable by adding only one
edge to a spanning tree.

Corollary 4. Consider the edge agreement problem where the
underlying graph is a spanning tree, T = (V, Eτ ), and consider an
edge e ∈ E τ . The maximum performance gain is achieved by adding a
cycle of length equal to diam[G]+1, while theminimum performance
gain is obtained by adding a cycle of length three (i.e., a triangle).

This result clearly states that longer cycles are better than
shorter oneswhen adding a single edge. Furthermore, it establishes
a very strong connection between a purely combinatorial property
of the graph, i.e., the length of the cycle, to a system theoretic
property of the edge agreement problem, i.e., its H2 performance.
Theorem 5 can be extended to adding multiple edges by using the
results of Proposition 1. In particular, the next result describes the
change in performance after the addition of k edge-disjoint cycles.

Corollary 5. Consider the edge agreement problem where the
underlying graph is a spanning tree, T = (V, Eτ ), and consider adding
k edges ei ∈ E τ for i = 1, . . . , k, such that the new edges add k
edge-disjoint cycles, ci, to the graph. Then the performance of the edge
agreement problem is given as

∥Σe(T ∪
k
i=1 ei)∥

2
2 = ∥Σe(T )∥2

2 −
1
2


k −

k
i=1

(l(ci))−1


. (20)

Corollary 5 can be used as a guideline for adding edges to a
tree with maximum benefit to the H2 performance. This problem,
adding k-edge disjoint cycles to a graph, turns out to be a very
difficult combinatorial problem to solve and is related to the cycle
packing problem, which for general graphs is N P-hard [39].

In many cases, it will not be possible to add only disjoint cycles.
Indeed, even adding three cycles to the path graph on 5 nodes
will require at least two correlated cycles. In this direction, we
first discuss how the addition of two arbitrary cycles affects the
performance.

Corollary 6. Consider the edge agreement problem where the
underlying graph is a spanning tree, T = (V, Eτ ), and consider
adding 2 edges e1, e2 ∈ E τ , such that the new edges add 2 new cycles.
Then the performance of the edge agreement problem is given as

∥Σe(T ∪ {e1, e2})∥2
2

= ∥Σe(T )∥2
2 −


1 −

l(c1) + l(c2)
2(l(c1)l(c2) − s212)


. (21)
Proof. The matrix T(T ,C) must have two columns and conse-
quently T(T ,C)T T

(T ,C) has rank 2. Furthermore, the non-zero eigen-
values of T(T ,C)T T

(T ,C), denoted µi, are the same as the non-zero
eigenvalues of

T T
(T ,C)T(T ,C) =


l(c1) − 1 ±s12

±s12 l(c2) − 1


.

These eigenvalues can be determined as

µi =
1
2


l(c1) + l(c2)

±


l(c1)2 + l(c2)2 − 2l(c1)l(c2) + 4s212


− 1.

Therefore,

tr

(I + T(T ,C)T(T ,C))

−1
= n − 3 +

1
1 + µ1

+
1

1 + µ2

= n − 3 +
l(c1) + l(c2)

l(c1)l(c2) − s212
.

The proof now follows from Theorem 3. �

Note that when the edges are disjoint (i.e., s12 = 0), Corollary 6
agrees with the results in Corollary 5.

In the context of Corollary 3, one might consider the combina-
torial effects of adding multiple correlated cycles. Indeed, through
successive application of the rank-one update, the results of Corol-
lary 6 could be extended to an arbitrary number of cycles; this
would lead to an expression in the form of a continued fraction.
However, already in the simpler case of adding only two cycles,
we can conclude that it is advantageous to add long cycles that are
minimally correlated. Regardless of how many cycles are added,
the above results should also indicate that it may not be trivial to
add a fixed number of cycles with the largest impact on the perfor-
mance. We address this in the sequel through the introduction of
an optimization problem aimed at solving (11).

5. Design of cycles

The results of Section 4 provide a clear analytic picture of how
cycles impact the H2 performance of the edge agreement prob-
lem. A trivial conclusion that one may arrive at is to always use
the complete graph. The complete graph also, for example, has
the largest algebraic connectivity (λ2(G)) and thus is desirable
for other performance indicators. However, as is common in real-
world engineering applications, it may not be feasible to imple-
ment a consensus network with all possible communication links.
A more realistic view of consensus networks involves a constraint
limiting the number of edges in the underlying graph. These con-
straints may derive from both computation, communication, and
budgetary restrictions of the designed system.

In this venue, we consider the problem outlined in Problem 1
and propose a convex relaxation of the problem that leads to
a semi-definite program. Using this formulation, we then show
how additional criteria, such as maximization of the algebraic
connectivity, can also be embedded into the problem.

5.1. Cycle design via ℓ1-optimization

The feedback interpretation of cycles in consensus networks
presented in Section 3 represents a powerful paradigm when
considering problems in design. The primary difficulty, however,
is that the decision to add a new cycle to the tree is a binary
one; either a candidate edge is added or not added. This means
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that Problem 1 falls under the realm ofmixed integer programming
(MIP) [40].

A common approach for solving MIPs is by considering a
relaxation of the problem that leads to a convex formulation. For
this work, we consider an ℓ1-relaxation of the problem. Before
discussing the relaxation, we first formulate a more detailed
description of the problem (11).

To begin, note that given a spanning tree T = (V, Eτ ), all
the candidate edges that can be added belong to the set E τ . In
particular, this set will contain exactly |E τ | = (1/2)(n− 1)(n− 2)
edges. Furthermore, note that any graph G ⊂ Kn can be obtained
by the deletion of edges from the complete graph Kn. By assigning a
weight wi ∈ {0, 1} to each edge in E τ we are able to represent any
graph with spanning tree T via an appropriate choice of weights.

Let T(T ,T ) be defined as in (3), describing all cycles that can
be created from the spanning tree T . Then the essential edge
Laplacian for any graph G such that T ⊆ G can expressed as

Le(T )

I + T(T ,T )WT T

(T ,T )


, (22)

where W = diag{w1, . . . , w|E τ |}, and wi = 1 only for edges in G.
Recall now from Theorem 3 that the performance of the

edge agreement problem relates to the trace of the inverse of
I + T(T ,T )WT T

(T ,T )


. Therefore, Problem 1 can now be seen as

the MIP

min
wi

tr


I + T(T ,T )WT T
(T ,T )

−1


(23a)

s.t.


i

wi = k (23b)

wi ∈ {0, 1}. (23c)

The constraint (23b) is used to specify howmany edges are allowed
to be used for cycle design.

The objective (23a) is a non-linear function of the variables
wi. However, by introducing a new variable, the minimization
problem can be converted to the mixed-integer semi-definite
program. Consider the symmetric matrix M ∈ R|Eτ |×|Eτ | with
M ≥ 0, then (23) can be written as

min
M,wi

tr [M] (24a)

s.t.

M I
I I + T(T ,T )WT(T ,T )


≥ 0 (24b)

i

wi = k (24c)

wi ∈ {0, 1}. (24d)

This can be seen by noting that

tr


I + T(T ,T )WT T
(T ,T )

−1


≤ µ

is equivalent to the matrix inequality
I + T(T ,T )WT T

(T ,T )

−1
≤ M, (25)

whereM is some positive semi-definite matrix satisfying tr [M] ≤

µ; this results from the fact that the trace operator is monotonic
under matrix inequalities [37]. Applying the Schur complement
then yields the LMI in (24b). The objective then becomes the
minimization of the trace ofM , leading to the formulation in (24a).

We are now prepared to discuss a relaxation for this problem.
The most common approach for relaxation of {0, 1}-optimization
problems is to relax the constraints on theweights and allow them
to take values continuously on the interval [0, 1]. This relaxation
results in a convex formulation, however there is no guarantee
that the solution will be integer, or for that matter, even sparse.
This has several ramifications. On the one hand, solutions will
lead to a weighted agreement problem. More importantly, the
constraint (23b) now takes a different interpretation. To guarantee
sparse solutions,we reformulate the objective function (24a) in the
following way as

min
M,wi

tr [M] + ∥w∥0. (26)

Recall that the ℓ0-norm of the vector is a measure of its sparsity
(defined in Section 1.1). In this way, minimizing ∥w∥0 attempts to
maximize the number of zero-elements in the vector.

This is a common sense approach which simply seeks the
sparsestw satisfying the constraints. However, such an approach is
of little practical use, since the optimization problem is non-convex
and NP-hard as its solution requires a combinatorial search which
grows faster than polynomial as the number of candidate edges
grow [30]. Similar to the convex relaxation for rank minimization
in [41], we will use the convex envelope of ∥w∥0 defined next.

Let the map f be defined as f : X → R, where X ⊆ Rn. The
convex envelope of f (on X), denoted fenv, is defined as the point-
wise largest convex function g such that g(x) ≤ f (x) for all x ∈ X.

Lemma 1 ([42]). The convex envelope of the function f = ∥x∥0 =n
i=1 |sign(xi)| on X = {x ∈ Rn

|∥x∥∞ ≤ 1} is fenv(x) = ∥x∥1 =n
i=1 |xi|.

With this, we can relax the non-convex ℓ0-minimization in (26) by
the convex ℓ1-minimization

min
M,wi

tr [M] + ∥w∥1; (27)

note that this can be solved using linear programming. Addition-
ally, this is the best possible convex relaxation since the ℓ1-norm
is the convex envelope of the ℓ0-norm.

As described in [32], reweighted ℓ1-minimization can be used to
improve the results of the minimization. In this direction, weights
mi > 0 can be assigned to each variable wi as

min
M, wi

tr [M] +

n
i=1

miwi. (28)

For the described design problem, the weights are free
parameters. They counteract the influence of the signal magnitude
on the ℓ1-penalty function. Ifmi = 1 for all i, theweighted ℓ1-norm
reduces to the regular ℓ1-norm. If the weights mi are chosen to be
inversely proportional to the magnitude of wi
mi = 1/|wi|, wi ≠ 0
mi = ∞, wi = 0, (29)

then the weighted ℓ1-norm and the ℓ0-norm coincide. Addition-
ally, in the context of Problem 1, the results of Section 4 indicate
that a proper choice of weights can be used to force the solution
towards certain graphs. Assigning a large weight to specific edges
has the interpretation that those edges are not desirable.

This brings us to the complete ℓ1-relaxation of the MIP
described in (23),

min
M,wi

αtr [M] + (1 − α)


i

miwi (30a)

s.t.

M I
I I + T(T ,T )WT T

(T ,T )


≥ 0 (30b)

i

wi = k (30c)

0 ≤ wi ≤ 1. (30d)
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Here we have also introduced a weighting factor α ∈ [0, 1] as a
tuning parameter for the relative emphasis on each term in the
objective function.

We now discuss possible weighting options for the relaxed ver-
sion. In fact, we emphasize that the choice ofweights is an essential
step that must be determined by the designer. In the following, we
explore a variety of edge weights based on the results of Section 4.
The results of Corollaries 5 and 6 suggest that long cycles with low
correlation are desirable. A first attempt at a weighting function,
therefore, is to consider the inverse of the length each cycle will
create; that is, the weights should be defined as

Long Cycle-length weighting:mlc
i = diam[G] + 1 − l(ci) (31)

where ci is the ith column of the matrix T(T ,C). This will place a
greater emphasis on adding longer cycles in the graph. Note, how-
ever, that this would not prevent the optimization from selecting
long cycles that are highly correlated.

On the other hand, it may also be desirable to encourage cycles
that are short. This might arise, for example, in scenarios where
sensing or communication across long distances is too costly. In
this direction, we can consider weights of the form

Short Cycle-length weighting:msc
i = l(ci). (32)

Anotherweighting option is to focus on the expected number of
correlated edges each cycle contains. This value can be determined
using the results of Proposition 1.

Cycle-correlation weighting:ms
i =

1
|Ec |


j≠i

T(T ,C)


ij

 . (33)

Here, edges that are likely to be highly correlated with many other
edges will receive a larger weight. Observe that the weights mlc

i
and ms

i are therefore inversely proportional; the longer a cycle is
the more likely it is to be highly correlated with other cycles. This
can give insight into a third possible weighting that attempts to
balance both the cycle length and correlations.

Cycle-length/correlation weighting:mi(s) = βmlc
i m

s
i ; (34)

the tuning parameter β can be used as a normalization factor for
the weights. A similar weight can be defined for short cycles.

While in practice these weighting functions will lead to sparse
solutions for the cycleweightswi, theremay arise situationswhere
the optimization problem does not return an integer solution. In
this case, the optimization problem can be iterated until a desired
integer solution is obtained.We therefore embed the problem (30)
into the following algorithm, originally proposed by [32]:

Algorithm 1 Reweighted ℓ1-minimization

1. Set h = 0 and m(0)
i for i = 1, . . . , |Ec | according to the rules

(31), (33), or (34).
2. Solve the minimization problem (30) to find the optimal

solution w
(h)
i .

3. Update the weights

m(h+1)
i =

1

w
(h)
i + ϵ

,

where ϵ > 0 ensures that the inverse is always well defined.
4. Terminate if the solution is integer, otherwise set h = h + 1.

Remark 2. In the author’s experience, Algorithm 1 reaches an
integer solution in 2–3 iterations.
Fig. 4. A spanning tree on 30 nodes.

Remark 3. While the ℓ1-relaxation leads to a semi-definite
program that can be solved in polynomial time, there are still
limitations to the solvable problem sizes. In practice, this algorithm
performs well for graphs with |V| < 100 nodes (i.e., |E τ | =

O(1000)). This is a consequence of considering all possible edges
in the problem formulation. An area of future work is the
development of more efficient algorithms for larger scale graphs
using, for examples, algorithms related to cycle packing [43].

As discussed earlier, the first step of the algorithm, i.e., the
initial choice of edge weights, greatly influences the solution.
From an engineering design stand-point, this can be seen as
a favorable feature. Indeed, there may be additional features a
designer might want to promote when solving Problem 1 without
including additional constraints. This can be accomplished via an
appropriate choice of edgeweights. This point will be illustrated in
the simulations provided in the sequel.

5.2. Cycle design and connectivity maximization

Another advantage of the formulation presented in 5.1 is the
ability to embed additional constraints or performance criteria into
the problem. One of the most studied performance criteria for
consensus networks is the rate of convergence of the system. It is
well known that this value is dictated by the algebraic connectivity
of the graph, λ2(G) [1].

The algebraic connectivity of the graph can be determined by
solving a semi-definite program [15],

max
µ

µ (35a)

s.t. PT L(G)P ≥ µI, (35b)

where L(G) is the graph Laplacian, and P = Im[1⊥
], the matrix

representation of the orthogonal sub-space to the all-ones vector.
Note that for a connected graph, PT L(G)P is the same size as the
essential edge Laplacian.

Similar to the essential edge Laplacian, the graph Laplacian of
any graph can be expressed using the complete graph with {0, 1}
weights on each possible edge. Given a spanning tree, the Laplacian
can be expressed as

L(G) = L(T ) + E(T )T(T ,T )WT T
(T ,T )

E(T )T .

Note that the above equation is linear in the weights. Therefore,
this can be embedded into the program (30), leading to the
following SDP,

min
M,κ,wi

α1tr [M] − α2κ + α3


i

miwi (36a)
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(a) Using weights defined in (31). (b) Using weights defined in (32).

(c) Using weights defined in (34). (d) Using identical weights on each edge.

Fig. 5. The weighting function for cycle design has a large affect on the resulting graph.
(a) Using weights defined in (31). (b) Using weights defined in (32).

(c) Using weights defined in (34). (d) Using identical weights on each edge.

Fig. 6. The weighting function for cycle design has a large affect on the resulting graph.
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s.t.

M I
I I + T(T ,T )WT T

(T ,T )


≥ 0 (36b)

κ I − PTE(T )T(T ,T )WT T
(T ,T )

E(T )TP ≤ PL(T )PT (36c)
i

wi = k (36d)

0 ≤ wi ≤ 1. (36e)

Remark 4. At the cost of additional conservativeness, the objec-
tive function can be reduced to α1tr [M]+α2


i miwi and consid-

ering κ as a pre-defined constant. This may improve the numerical
performance of the optimization.

The program (36) can then be used in Algorithm 1. The
resulting solution will be an attempted balance between the rate
of convergence of the system and its H2 performance.

6. Simulation example

In this section we demonstrate the design procedure described
in Section 5 with a few numerical examples. For each example we
will work with the same spanning tree graph on |V| = 30 nodes,
generated randomly in MATLAB; see Fig. 4. The H2 performance
and algebraic connectivity for this graph can be determined as
∥Σ(T )∥2

2 = 43.5 and λ2(G) = 0.07 and for the complete graph
∥Σ(Kn)∥

2
2 = 29.97 and λ2(Kn) = 30. The longest cycle in this

graph is determined by its diameter, diam[G] = 10.
For this example, there are |E τ | = 406 possible edges that

can be added. We will consider Problem 1 while attempting to
add 40 new edges. To emphasize the combinatorial difficulty of
solving this problem exhaustively, note that there are


406
40


≈

3.6862 × 1055 possibilities! First, we compare the performance of
Algorithm 1 with the different weighting functions using solvers
provided by YALMIP and SeDuMi [44,45]. For mlc and mscc ,
the weights were normalized to have unit norm. The combined
weights were defined as in (34). To further illustrate the effects of
the weighting function, we also consider identical weights on each
edge, representing a ‘‘pure’’ ℓ1 objective. The resulting graphs are
shown in Fig. 5. Notice that the graph generated by the cycle length
weights indeed produces a graph with longer cycles, while the
other weighting options tend to favor shorter edge-disjoint cycles.
For identical weights on each edge the resulting graph seems, at
least qualitatively, to be in between the cycle-length and cycle-
correlation results. The resulting performance for each case is given
in Table 1.

We now consider the design problem outlined in Section 5.2.
The resulting graphs are shown in Fig. 6. It is interesting to observe
that including the connectivity constraint tends to favor longer
cycles, as demonstrated by comparing the graphs in Figs. 5 and
6. This reveals a subtle result relating, at least through numerical
simulation, a correlation between the algebraic connectivity and
the length of the cycles. It is also interesting to observe how
the addition of the connectivity performance hardly affects the
attainable H2 performance. Note that in all weighting options
the value of λ2 was increased, most significantly for the uniform
weights. The resulting performance and value of λ2(G) are also
summarized in Table 1.

The simulation examples illustrate both the effectiveness of
the design procedure, and the importance of the edge-weight
selection. Indeed, as might be expected, the H2 performance
of the system is related to the system eigenvalues, and in
particular, λ2(G). While the optimization formulation allows for
the simultaneous design of both objectives, it becomes more
difficult to understand precisely how the trade-off is emphasized
Table 1
Summary of H2 performance and λ2(G) for each simulation example.

ℓ1 weights H2 H2 + λ2(G)

mlc
i ∥Σe(G)∥2

2 = 36.10 ∥Σe(G) ∥
2
2 = 36.26

λ2(G) = 0.65 λ2(G) = 0.67

msc
i ∥Σe(G)∥2

2 = 34.74 ∥Σe(G) ∥
2
2 = 34.76

λ2(G) = 0.40 λ2(G) = 0.45

mi = mlc
i m

s
i ∥Σe(G)∥2

2 = 35.09 ∥Σe(G)∥2
2 = 35.02

λ2(G) = 0.23 λ2(G) = 0.31

mi = 1 ∥Σe(G)∥2
2 = 34.84 ∥Σe(G)∥2

2 = 35.27
λ2(G) = 0.19 λ2(G) = 0.95

during the numeric evaluation of the algorithm. This formulation,
however, does lead to qualitative intuitions, as evident by merely
glimpsing at the resulting graphs. Furthermore, while the variation
of the performance using different edge weights are not dramatic,
the resulting graphs to yield significantly different structures.
This can be considered an advantage when additional constraints
on cycle lengths must be considered. When combined with
the analytic results this can be considered a powerful design
framework.

7. Concluding remarks

This work provided a characterization of how cycles impact
the H2 performance of consensus networks. This analysis was
facilitated by using an edge variant of the graph Laplacian matrix,
termed the essential edge Laplacian. This matrix representation
of the graph leads to a deeper insight of the role cycles play for
certain algebraic properties. When applied to the corresponding
edge agreement problem, the role of cycles were related to the
performance of the system. In particular, the purely combinatorial
property of cycle lengths and cycle correlations were shown to
directly impact the H2 performance of the system.

The analytic results were then used to formulate an optimiza-
tion problem for the design of consensus networks. Using an ℓ1-
relaxation, the problem was transformed into a semi-definite pro-
gram. This relaxation turns out to be very sensitive to the weight-
ing function used on the edges. This provides an important tun-
ing parameter for design of these systems. Another advantage of
this representation is additional performance parameters are eas-
ily embedded into the program. This was demonstrated by aug-
menting the program with a algebraic connectivity maximization
objective. The results were demonstrated via some numerical sim-
ulations.
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